可见、近红外技术对黑枸杞品质研究
发布时间:2023-03-29
浏览次数:1171
可见、近红外技术对黑枸杞品质研究
1. 实验目标
高光谱成像仪采集的实验目标为黑枸杞,分为红果、烂果、霉变果,其中红果是指没有成熟就摘下来的果实;烂果是没有发生霉变,只是果实没压碎了,可与霉变果作对比参照;霉变果是指发生霉变的果实,如下图所示。
图2 需要高光谱设备采集的实验目标
2. 实验结果
2.1 可见、近红外技术分析黑枸杞品种
图3为黑枸杞烂果、霉变果和红果在400-1000nm波长范围内的光谱反射率曲线,从其反射率曲线来看,在可见光区域,烂果、霉变果和红果的光谱反射率曲线变化趋势相似,其相对值也很接近,但在近红外区域,特别是730nm以后,红果的光谱反射率则开始异于烂果和霉变果,在800nm以后,红果的光谱反射率值则小于烂果和霉变果的光谱反射率值。烂果和霉变果在400-1000nm范围内,其光谱曲线变化趋势一致,唯一不同的一点可能就在于烂果在720nm处反射率曲线陡然上升,而霉变果则在680nm处就已经陡然上升。总体上,烂果和霉变果曲线上升的斜率均大于红果上升的斜率。图3右侧为利用400-1000nm光谱范围对烂果、霉变果、红果的分类研究,上半部分为烂果、中间部分为霉变果、下半部分为红果。由于红果中也有少量的霉变果,而霉变果中肯定也不是全部整个果子都发生霉变,同理烂果中也可能存在霉变果等,因此分类结果只能大致的告知哪些是烂果、霉变果和红果。
图 3 烂果、霉变果以及红果在400-1000nm的光谱及分类
2.2 短波红外技术分析黑枸杞品种
图4为黑枸杞烂果、霉变果和红果在短波红外1000-2500nm波长范围内的光谱反射率曲线,从其反射率曲线来看,在1000-1250nm范围内,红果的光谱反射率低于烂果和霉变果的光谱反射率,在1120nm处。烂果和霉变果有明显的峰谷,而红果的峰谷不明显;但在1250-2500nm范围内,红果的光谱反射率则高于烂果和霉变果的光谱反射率,然而在1250-2500nm范围内,红果与烂果、霉变果的光谱曲线变化趋势则非常相似。在短波红外1000-2500nm范围内,烂果和霉变果的光谱反射曲线也十分相似,在1000-1400nm和1600-2500nm范围内,烂果的光谱反射率值高于霉变果的反射率值;在1400-1600nm和范围内,烂果的光谱反射率值则低于霉变果的反射率值。图4右侧为利用1000-2500nm光谱范围对烂果、霉变果、红果的分类研究,上半部分为烂果、中间部分为霉变果、下半部分为红果。从分类结果来看,霉变果有一部分被分为了烂果,而红果中由于本身存在霉变果,所以部分被分为霉变果或者烂果属于正常现象。霉变果中由于不可能全部或者整个果子都发生霉变,所示在分类的过程中,有部分没发生霉变的被分为红果属于正确分类。
图4 烂果、霉变果以及红果在1000-2500nm的光谱及分类
相关产品
-
高光谱数据特征波长变量选择方法有哪些?
高光谱成像仪获取的数据非常的庞大,这些信息比较的冗沉,采取一定的方法提取对建模有效的波长变量,删除冗余变量,减少波长变量个数,优化模型,提高模型预测精确度非常..
-
高光谱数据预处理及高光谱数据特征波段提取方法
高光谱成像仪在获取样品的光谱数据时,会有很多信息是重复的或者是无信息变量甚至可能是影响数据模型结果的噪声数据,因此就需要对光谱数据进行预处理,提取特征波长数据..
-
高光谱成像技术:刑侦领域物证提取
在刑事侦查中,指纹因其唯一性和稳定性被誉为“物证之王”,而血指纹作为恶性案件现场的关键痕迹,其高效提取对案件侦破至关重要。然而,传统方法如Photoshop软件..
-
高光谱成像技术:解锁文物修复的无损密码
在历史的长河中,古籍、壁画等文物承载着人类文明的记忆。然而,高温、高湿、光照等环境因素不断侵蚀着这些文化瑰宝——墨水氧化导致字迹模糊,颜料褪色使壁画失去光彩,石..